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LONG-TERM GOALS  
 
To predict the probability distribution function (pdf) of medium range weather forecast errors as 
accurately as possible. 
 
OBJECTIVES  
 
Objective 1: To compare the Bishop et al.’s (2001) recently developed Ensemble Transform Kalman 
Filter (ET KF) ensemble generation technique against the breeding of growing vectors (BGV) 
technique (Toth and Kalnay, 1993, 1997) in a GCM. 
 
Objective 2: To quantify the limits of an ET KF ensemble that does not explicitly account for model 
error to predict forecast error variance in a GCM. 
 
Objective 3: To identify and remove (a) model error bias, (b) model error that correlates with 
variations in key parameters controlling the model’s parameterizations of unresolved processes and (c) 
model error that correlates with deviations of the model trajectory about the climatological mean. 
(NWP failure to predict cold air damming due to poorly resolved topography is a fine example of a 
systematic model error that would correlate with the deviation of the model trajectory about the 
climate mean.)  
 
Objective 4: To create and test an ensemble generation scheme that accounts not only for the loss of 
predictability due to initial condition error but also for the loss of predictability due to model error.  
 
APPROACH  
 
The above aims are motivated by the fact that in current operational ensemble prediction systems, e.g., 
the singular vector method (Buizza and Palmer 1995; Molteni et al. 1996) adopted by the European 
Centre for Medium-Range Weather Forecasting (ECMWF), the breeding method (Toth and Kalnay 
1993,1997) used at National Centers for Environmental Prediction (NCEP), the ratio of ensemble 
variance to forecast error variance diminishes with time form the 3 day to 10 day forecast lead time. 
Work by Houtekamer et al. (1996) and Smith (2001) makes it clear that a major reason for this 
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deficiency in ensemble forecasts is the presence of model error. As such, model error is a major issue 
in quantifying predictability. 
     
To build up stable statistics for model error, one needs to examine many years worth of data.  The 
limitations of the computing resources we expect to obtain for this study thus forces us to restrict our 
study to the predictability characteristics of a model with considerably lower resolution than the 
models typically used for NWP. 
 
WORK COMPLETED 
 
Considerable progress has already been made in achieving Aims 1 and 2. Xuguang has developed 
numerical tools to run T42 CCM3 ensemble forecasts off the NCEP/NCAR reanalysis data set on 4 
PCs each with dual 933 MHz processes running Linux. She has already begun using these tools to 
compare the performance of ensemble perturbations during the 2000 Boreal summer (JJA) generated 
using the breeding method (Toth  and Kalnay, 1997) with ensemble perturbations generated using the 
recently developed ET KF ensemble generation technique.  
 
In this new ET KF ensemble generation scheme, forecast perturbations listed as columns in the matrix 
Zf are transformed into analysis perturbations Za by a transformation matrix T, that is, Za= Zf T. These 
analysis perturbations are then added to the analysis to give the initial conditions for the subsequent 
ensemble forecast. The transformation matrix T is chosen in order to ensure that the covariance matrix 
associated with the transformed perturbations Fa = Za ZaT  would be precisely equal to the true 
analysis error covariance Pat if  Ff = Zf ZfT  were precisely equal to the true forecast error covariance 
matrix Pft .  
 
In the breeding technique, all of the forecast ensemble perturbations are transformed into analysis 
perturbations by multiplying each of them by a constant factor whose magnitude is less than one. Thus, 
in its simplest form, the breeding technique takes no account of variations in observational density nor 
does it account for the fact that data assimilation schemes reduce error in directions corresponding to 
large forecast error variance more than directions corresponding to small forecast error variance (cf 
Daley, 1991). Because the breeding method’s transformation from forecast perturbations to analysis 
perturbations reduces perturbation amplitude in all directions by the same factor, directions 
corresponding to slowly growing errors maybe removed from the ensemble perturbation subspace.  
 
Indeed, if the atmosphere went into a quasi-stationary state, all bred perturbations would eventually 
take on the characteristics of the fastest growing eigenvector of the perturbation dynamics propagator 
associated with the quasi-stationary basic state. In this case, all of the perturbations would be 
approximately parallel to each other and there would be little point in having more than one or two 
ensemble members.  
 
In contrast, the ET KF transformation of forecast perturbations into analysis perturbations accounts for 
variations in observational density. Furthermore, consistent with filtering properties of an optimal data 
assimilation scheme, it ensures that perturbation amplitude is reduced more in directions 
corresponding to large forecast error variance than it is in directions corresponding to small forecast 
error variance. These considerations led to the following hypotheses.  
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Hypothesis 1. The variance of initial ET KF ensemble members would better reflect inhomogeneities 
in analysis error due to inhomogeneities in the observational network than the corresponding variance 
of initial bred mode ensemble members.  
 
Hypothesis 2. The spectrum of eigenvalues of the forecast error covariance matrices produced by the 
ET KF ensemble will be much flatter than the corresponding spectrum of eigenvalues produced by the 
bred-mode ensemble; i.e. the ET KF ensemble will produce ensemble spread in many more directions 
than the bred-mode ensemble.  
 
Hypothesis 3. Bred-vector forecast errors are more highly correlated than ET KF ensemble members. 
 
RESULTS  
 
To test these hypotheses, Xuguang ran an 8 member ET KF T42 CCM3 ensemble for the 2000 Boreal 
summer and compared the characteristics of this ensemble with the characteristics of an 8 member 
bred mode ensemble over the same period. For the ET KF ensemble generation scheme, it was 
assumed that the observational network consisted solely of rawinsondes released every 12 hours. For 
both the breeding and ET KF techniques, Dee’s (1995) maximal likelihood parameter estimation 
theory was used to ensure that 12 hr ensemble perturbation magnitude was consistent with 12 hr 
forecast error at rawinsonde sites. Fig. 1 compares the seasonal mean vertically averaged ensemble 
wind variance of ensemble members at the analysis time for the breeding technique (Fig. 1a) and the 
ET KF technique (Fig. 1b). First, note that initial perturbation amplitude in the observation scarce 
southern hemisphere is much larger for the ET KF than it is for the breeding technique. Second, note 
that despite the high concentration of rawinsondes over the Eurasian continent, initial bred 
perturbation amplitude is locally maximized in this region. In contrast, ET KF initial perturbation 
amplitude is quite small in this region. These characteristics of Fig. 1 are consistent with hypothesis 1.  
 
Gross characteristics of Fig. 1 that are not clearly consistent with hypothesis 1 are that localized 
concentrations of rawinsonde observations such as those in South Africa and South America had no 
perceptible effect on mean ET KF initial ensemble perturbation amplitude. Moreover, we are 
concerned that while there is a local mid-latitude minimum in perturbation amplitude over rawinsonde 
dense North America, initial perturbation amplitude seems unrealistically high. Since with an 
ensemble of only 8 members there is a limited number of observation density characteristics towards 
which the ET KF perturbations can adjust, presumably these aspects of the ET KF ensemble analysis 
variance would be reduced if a larger ensemble were used. Tests are currently under way to test this 
presumption. 
Fig. 2 compares the seasonal mean spectrums of eigenvalues of the ensemble based 12 hr forecast error 
covariance matrices for the bred-mode ensemble and the ET KF ensemble.  
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Fig. 1 Seasonal mean vertically 
averaged ensemble wind 

variance 

 

Figure 2. Mean ETKF and 
BGV eigenvalues 
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In confirmation of hypothesis 2, Fig. 2 shows that the spectrum of ET KF eigenvalues is much flatter 
than the bred-mode eigenvalues. In other words, while there are large amounts of ensemble forecast 
variance present in all seven orthogonal directions of the ET KF ensemble nearly all of the bred-mode 
ensemble forecast variance is contained in a single direction.  
 
In confirmation of Hypothesis 3, the average error correlation of T42 forecasts of 2m temperatures at 
northern hemisphere mid-latitude rawinsonde sites for ET KF and breeding members was found to be 
0.79 and 0.91, respectively. Presumably, the relatively large error correlations found for both 
techniques is due to model error. 
 
IMPACT/APPLICATIONS  
 
At NRL Monterey, research is being conducted to improve FNMOC’s (bred vector) ensemble 
forecasting capabilities. Because of the positive results found in our preliminary tests, the ETKF 
ensemble generation scheme and other schemes will be tested at NRL to determine their suitability for 
transition into operations at FMNOC. Zoltan Toth and Mohzeng Wang of the National Centers for 
Environmental Prediction (NCEP) are also preparing to test versions of the ETKF ensemble generation 
scheme to determine its suitability as a replacement to their current bred vector scheme.  

 
TRANSITIONS  

 
NCEP, in collaboration with former Post-doctoral fellow Sharanya Majumdar, graduate student Brian 
J. Etherton and undergraduate student Jonathon Moskaitis, is currently applying the ETKF to a 
combined ECMWF/NCEP ensemble to determine were aircraft should fly in the ongoing NOAA 
Winter Storms Reconnaissance program.  

 
RELATED PROJECTS  
 
The NSF grant ATM-98-14376 “Adaptive Sampling with the Ensemble Transform Kalman filter” 
enabled tests of the ability of the ETKF to predict reductions in forecast error variance due to targeted 
observations. See http://www.met.psu.edu/dept/faculty/bishop.htm  and 
http://orca.rsmas.miami.edu/~majumdar/  for details. 

 
SUMMARY  

 
In order to more accurately represent the uncertainty in weather forecasts a new, computationally 
inexpensive method has been devised for generating multiple forecasts whose differences reflect 
weather forecast uncertainty. Our tests indicate that the method is superior to the breeding technique 
that is currently used by the federally funded civilian and Naval weather forecasting agencies. 
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